NIP (Non Impact Printing – Kalıpsız Baskı) Teknolojilerinden Elektrofotografi Baskı Tekniğinin İncelenmesi

Examining the Elektrophotographic Printing Techniques of NIP (Non Impact Printing)

G. Gülnaz GÜLTEKİN

ABSTRACT

Unlike traditional and digital printing systems which use print plate, technologies which do not require a fixed model printing plate and which allow different images to be printed simply back to back from the computer is called Non-impact printing.

Today, many digital printing systems which use toner or liquid ink use one of the NIP technologies that can be examined under seven different headings.

In this study, general information about NIP technology is given and electrophotographic pressure which is a widely used NIP technology has been examined.

Keywords: Digital Printing,, Electrophotography, Printing Technologies without Plate

ÖZET

Baskı kalıbını kullanan geleneksel ve dijital baskı sistemlerinin aksine, sabit modelli bir baskı kalıbı gerektirmeyen, farklı görüntülerin basıtçe arka arkaya basılabil dilig bilgisayardan baskıya teknolojilerin tamamı, kalıpsız baskı (Non-impact printing – NIP) olarak adlandırılmaktadır.

Günümüzde toner ya da sıvı mürekkep kullanan pek çok dijital baskı sistemi, yedi ayrı başlık altında incelenebilen NIP teknolojilerinden birini kullanmaktadır.

Bu çalışmada, NIP teknolojileri hakkında genel bilgiler verilmesinin yanı sıra, yaygın olarak kullanılan NIP teknolojilerinden biri olan elektrofografik baskı incelenmeye çalışılmıştır.

Anahtar Kelimeler: Dijital baskı, elektrofotografi, kalıpsız baskı teknolojileri

1 Yrd. Doç. Dr., Gazi Üniversitesi Teknik Eğitim Fakültesi Matbaa Eğitim Bölümü / Karatekin Üniversitesi Güzel Sanatlar Fakültesi, gulsumgulnaz@gmail.com
1. GİRİŞ

Basım ve yayınıcılık alanında, bilşim teknolojilerindeki gelişmelere bağlı olarak yeni ve yenilikçi bir dönem yaşanmaktadır. Bir yandan konvansiyonel baskı sistemleri varlığının sürdürülen, diğer yandan düşük baskı sayısında uygun maliyet, yüksek baskı hızı ve kalitesi, ürün çeşitliliği, kişiselleştirme, talebe dayalı üretim, çevre duyarlılığı, esneklik gibi müşteri odaklı yaklaşımlar sunan bilgisayardan baskıya sistemleri hızla yaygınlaşmaktadır. Özellikle kişiselleştirilmiş postalama ürünlerinin, küçük tirajlı kitap ve broşürlerin, etiketlerin basımında, talebe dayalı yayınıcılık sektöründe, prova baskılarnın üretiminde, ambalaj sektörünün test pazarı gibi alanlarda yeni dijital baskı teknolojileri hem ekonomik hem de yüksek kaliteli çözümleri ile geleneksel baskı sistemlerinin tahtını sallamaya başlamıştır. Bilgisayardan baskıya adı altında 1990'ların sonlarında piyasaya sürülen ancak her biri kendine özel kalıplar kullanlan Direct Imaging (DI) sistemleri, Non-Impact Printing (NIP) adı verilen kalıp kullanmanın baskı sistemlerinin gelişmesi ile arka planda kalı esacı. NIP, sabit modelli bir baskı kalıbı gerektirmeyen, farklı görüntülerin basıtiçe arka araya basılabildiği teknolojilerin genel adıdır. (1)

NIP Teknolojileri, ülkemizde ve dünyada hızla yaygınlaşmayı sürdürürken, bu teknolojilerin temel prensipleri, üstünlükleri ya da zayıf yanlarına ilişkin yeterli düzeyde Türkçe kaynak bulunmaması önemli bir eksiklik olarak görülmektedir. Bu tarafla değerlendirme çalışması, NIP teknolojilerinin yaygın kullanılan türlerinden biri olan elektrofotografi teknini ve bu teknik üzerine kuruluş sistemleri araştırarak amacıyla yapılmıştır.

2. NIP (NON-Impact/Kalıpsız/Vuruşuz Baskı) TEKNOLOJİLERİNE GENELE BAKIŞ

![Şekil 1: Vuruşuz Yazıcı Teknolojilerine Genel Bakış](image-url)
Şekil 1’de görülen genel şema NIP teknolojilerinin çeşitleri ve kullandığı malzemeler hakkında fikir vermektedir. Teknolojiler isimlerini, dayanıkları kimyasal ya da fiziksel kanunlardan almakmaktadır. (2)


NIP Teknolojisinde baskı oluşturmak için çoklu kullanımlık özel türdedeki mürekkeplere fiziksel olarak gerekşimim duyulur. Örneğin elektrofotografide toz toner veya sıvı tonerler kullanılır. Püskürme teknolojisi sıcak erimis mürekkep olarak adlandırılan düşük yoğunluklu mürekkeple çalışır. Thermografi ise mürekkep vericilerine uygulanabilen mürekkep kullanır. (2)

![Şekil 2. NIP Teknolojisi ile Yazdırma](image-url)

Uygulanan süreçe bağlı olarak şekil 2’de gösterilen baskı birimi, görüntüleme, görüntü taşıyıcıları ve mürekkep birimleri gibi pek çok farklı işlevsel bileşenlerle donatılmıştır. Şekil 1’de gösterildiği gibi NIP teknolojisi hem kağıt destekli, hem de web destekli baskıya uygulanabilir. (2)
3. ELEKTROFOTOGRAFİK BASKI SİSTEMİ

Elektrofotografi, en yaygın NIP teknolojilerinden biridir. Chester Carlson’ın 1939’da patent için başvurduğu ve 1942’de patentini alabildiği buluşa dayanmaktadır.(3) Günümüzde Xerox, Xeikon, Kodak, Hp Indigo, Canon gibi dijital baskıda öncü ve lider markaların kullandığı elektrofotografi, en yaygın NIP teknolojilerinden biridir. (4)

Şekil 3, elektrofotografi teknolojisinin çalışma prensibini göstermektedir. Şekilden de anlaşılacağı gibi, elektrofotografi baskı süreci beş aşamada incelenebilir. (2)
1- Görüntüleme
2- Murekkepleme (boyama)
3- Toner transferi (baskı)
4- Tonerin sabitlenmesi
5- Temizlik (koşullandırma)

1- Arsenik ya da selenyum içeren benzer bileşenlerle kaplama
2- Organik fotoiletken (OPC)
3- Donuk silikon
Selenyum benzeri bileşenlerin kullanım giderek azalırken, çok katmanlı organik kaplama sistemleri ve donuk silikon kullanım giderek yaygınlaşmaktadır.
3.1. Görüntüleme

Kontrollü ışık kaynağı ve uygun foto iletken yüklü yüzey yardımıyla görüntü elde edilir. Bu, LED¹ düzeni sayesinde yayılan ışıkla ya da lazer ışığının tarişmasi ile oluşabilir. Foto iletken çember üzerindeki ışık pozisyonunun uyarı etkisi baskı görüntüsüne karşılık gelir.


3.2. Mürekkep (Boya)


3.3. Baskı (Tonerin Transferi)


3.4. Tonerin Yakılması/Sabitlenmesi

Sabitleme ünitesi, toner parçacıklarının kağıt üzerine bağlamak yerine, kağıtta dayanıklı baskı görüntüsünü oluşturmayı sağlar. Bu genel olarak mürekkebin eritilmesi, daha sonra ısı kullanımı ve kağıda basınçla temas etmesi yoluya sabitlenir.

¹Light Emitting Diode", Işık yayan diyet), yarıiletken diyet temelli, ışık yayan bir elektronik devre elemanıdır.
3.5. Temizleme


Elektriksel temizleme ise (nötralize) yüzeyin homojen olarak değişen elektrik alanlarına maruz bırakılmamasıyla geçerleşir. Bundan sonra yüzey elektriksel olarak nötralize olur ve toner parçacıklarında temizlenir. İlk süreçte fotoiletken silindir homojen görüntü ile yüklenir; böylece yüzey korona ile kaplanır ve daha sonra görüntü oluşur.

4. ELEKTROFOTOGRAFİK BASKI SİSTEMLERİ

4.1. Sıvı Tonerli Baskı Sistemleri

Şekil 4. Sıvı Tonerli Elektrofotografik Baskı Sistemi

Şekil 4’de gösterildiği gibi, Indigo çok renkli baskı sistemlerinde sıvı tonerler, görüntüleme çemberindeki organik fotoiletkenlerle birlikte kullanılmaktadır. Mitsubishi tarafından tanıtılan MD 300 sistemlerinde ise sıvı tonerler, şekil 5’te gösterildiği gibi görüntü taşıyıcısı olarak donuk silikon kullanımla birlikte çalışır. (2)
4.2. İki Bileşenli Toner Kullanan Baskı Sistemleri

İki bileşenli tonerler genel olarak çok renkli baskı sistemlerinde yüksek kalite ve verimlilik için kullanılır. Örneğin Xeikon, Canon, Xerox (Şekil 6'da gösterildiği gibi) (2)

4.3. Tek Bileşenli Tonerle Baskı Sistemleri

Manyetik tek bileşenli tonerler tek renkli baskı sistemlerinde yüksek verimlilikle kullanılır. İyonografi, manyetografi, elektrofotografi kopyalama ve baskı
sisteminde kullanılır. Örneğin şekil 7’deki gibi, düşük hızdaki çok renkli baskı sistemlerinde baskı, manyetik olmayan kartuşla, kolayca değişebilen tek bileşenli tonerle ortaya çıkartılır. İki bileşenli tonerlerin taşıyıcı moleküllere ihtiyaç duyduğu gibi tek bileşenli tonerler ek sarf malzemesine ihtiyaç duymaz. Geliştirme biriminin dizaynını bu nedenle oldukça basittir.

Şekil 7. Tek Bileşenli Toner Kullanan Renkli Baskı Sistemi

4.4. Üç Dereceli Sistem


Şekil 8. Parlak ve Özel Renkli Baskı İçin Üç Dereceli Elektrofotografı
5. SONUÇ VE DEĞERLENDİRME

Günümüz basım ve yayıncılık dünyasında dijital baskı sistemleri, yüksek kalitede renkli ve siyah beyaz baskı çözümleri ile konvansiyonel baskı çözümlerinin yanında, bazen de alternatif olarak pazarın önemli bir bölümünü ele geçirmiş durumdadır ve yaygınlaşmaya devam etmektedir.

Özellikle baskıya hazırlık sürecini tasarmla sınırılmış olması, değişken veri baskı, kişide özel baskılar, talebe dayalı üretim, outdoor (dış mekan) baskıları (araç, bina giydirme ve bilbordlar), dekorasyon ve ambalaj sanayine yönelik tabaka ya da web baskı sistemleri, 2000’li yılların itibaren dijital baskıın gücüne güç katmıştır. Online dijital baskı uygulamaları, baskı hizmetleri üretiminin yerelden uluslararası ve giderek küresel platformda gerçekleşmesine neden olmaktadır.

Tüm bu bazıdöndürücü gelişmelerin Türk matbaacılık sektöründeki işletmeler için anlam, basım sektöründe faaliyetlerine etkisin bir şekilde devam etmeyi planlıyorlarsa, mevcut baskı departmanlarını dijital baskı bölümü ile desteklemek durumunda olduğundur. Bu çerçevede, dijital baskı teknolojilerini tanımlar, sistemler hakkında kapsamlı bilgi sahibi olmak yeni tür matbaacılara için artık ihtiyaçta öte zorunluluk halini almıştır.

Matbaacılık eğitimi veren örgün ve yaygın eğitim müfredatları, dijital baskı alanındaği gelişmelerle bağlı olarak yeniden düzenlenmelidir. Ortaöğretimde dijital baskı operatörlüğü programı açılmalı, ön lisans ve lisans programlarında ise dijital baskıya ayrılan ders sayısı ve zamanı arttırılmalıdır.

6. KAYNAKLAR