What is the O-Corner Interpretation and Does it Save the Traditional Square of Opposition?

O-Köşesi Yorumu Nedir ve Geleneksel Karşıtlık Karesini Kurtarabilir mi?

Yavuz Recep Başoğlu

ABSTRACT
To salvage traditional logic and traditional square of opposition from the problem of existential import, logicians have been offering solutions for centuries. In this paper, firstly it will be argued that as far as we know, the historically first solution proposed by Abelard in 11th century and by Seuren in 2002 is actually a version of the O-Corner Interpretation of traditional logic, which is generally attributed to the 14th century logician Ockham. Secondly, it will be advocated that two systems of Abelard and of Ockham have the same logical power. Lastly, the main claim will be that Abelard’s and Seuren’s system shall be favored over Ockham’s system.

Keywords: Problem of existential import, the o-corner interpretation, traditional logic, Abelard, Ockham, traditional square of opposition

ÖZET

Anahtar Kelimeler: Varlıksal varsayım problemi, o-köşesi yorumu, geleneksel mantık, Abelard, Ockham, geleneksel karşıtlık karesi
Introduction and Preliminaries

Aristotle, in his well-known logic book *De Interpretatione*, defined certain relations among four categorical statements, such that one is the opposite of the others in a specific sense. The most quoted passage (*De Interpretatione*, 17b17-26) where he outlines these relations is as follows:

“I call an affirmation and a negation contradictory opposites when what one signifies universally the other signifies not universally, e.g. ‘every man is white’ and ‘not every man is white’, ‘no man is white’ and ‘some man is white’. But I call the universal affirmation and the universal negation contrary opposites, e.g. ‘every man is just’ and ‘no man is just’. So these cannot be true together, but their opposites may both be true with respect to the same thing, e.g. ‘not every man is white’ and ‘some man is white’.”

For brevity, the following abbreviations have been traditionally using to refer to these four categorical statements:

<table>
<thead>
<tr>
<th>A: Universal Affirmative</th>
<th>Every S is P</th>
<th>SaP</th>
</tr>
</thead>
<tbody>
<tr>
<td>E: Universal Negative</td>
<td>No S is P</td>
<td>SeP</td>
</tr>
<tr>
<td>I: Particular Affirmative</td>
<td>Some S is P</td>
<td>SiP</td>
</tr>
<tr>
<td>O: Particular Negative</td>
<td>Some S is not P</td>
<td>SoP</td>
</tr>
</tbody>
</table>

Aristotle defined SaP as the contradictory opposite of SoP and SiP as that of SeP in the sense that they cannot both be true and cannot both be false together. Thus we define by means of the sentential operator “if and only if (↔)”;

\[\neg SaP \leftrightarrow SoP \] (Contradictory 1)

\[\neg SiP \leftrightarrow SeP \] (Contradictory 2)

In the passage quoted, SaP and SeP are defined as contrary opposites to the effect that they cannot both be true, but can both be false. Two formalizations in modern notations are available; one with the modal operator “possible (◊)” and one with the sentential operator “and (˄)”;

\[\neg \Diamond (SaP \land SeP) \land \Diamond (\neg SaP \land \neg SeP) \] (Contrary)

\[\neg (SaP \land SeP) \] (Contrary)

Depending on the relations Contradictory 1, 2 and Contrary just defined, the following relations can also be deduced. Let us first assume that SiP is false: Then, by Contradictory 1, SeP must be true. If SeP is true, then SaP must be false by Contrary. SaP and SoP are contradictory opposites. Therefore, SoP must be true. Thus, SiP and SoP are subcontrary opposites, in the sense that SiP and SoP cannot both be false but may both be true. Again, two formalizations may serve. This time, the operator ‘or (˅)’ shall be employed;

\(\emptyset(SiP \land SoP) \land \neg\emptyset(\neg SiP \land \neg SoP)\)
(Subcontrary)

\(SiP \lor SoP\)
(Subcontrary)

The other relation that can be deduced from the already defined ones is subalternation, which will turn out to be problematic in what follows. Assuming that \(SaP\) is true, Contrary implies that \(SeP\) must be false. By Contradiction 2, \(SiP\) must be true, to the effect that whenever \(SaP\) is true, \(SiP\) must be true as well or whenever \(SiP\) is false, \(SaP\) must be false too. The same line of reasoning can easily be carried out for the subalternation relation between negative statements as well: if \(SeP\) is true, \(SaP\) is false. So its contradictory, \(SoP\), must be true;

\(SaP \rightarrow SiP\)
(Subalternation 1)

\(SeP \rightarrow SoP\)
(Subalternation 2)

These relations are generally depicted in the following schema called the traditional square of opposition (see Figure 1)\(^2\).

Additionally, in Prior Analytics 1.2, 25a1-252\(^3\), Aristotle defined the immediate inference called Conversion, by which one can simply interchange the subject term and predicate term of a statement of the form E and I and the statement remains true. Thus, conversion validates the following inferences;

\(SeP \rightarrow PeS\)
(Conversion 1)

\(SiP \rightarrow PiS\)
(Conversion 2)

\(SaP \rightarrow PiS\)
(Conversion per accidens)

\(^2\) The vowels characterizing the categorical statements (A, E, I and O) in the traditional square of opposition are the invention of medieval logicians, not to be found in Aristotle’s original works.

\(^3\) Cf. “In universal statement the negative premise is necessarily convertible in its terms: e.g., if no pleasure is good, neither will anything good be pleasure; but the affirmative, though necessarily convertible, is so not as a universal but as a particular statement: e.g., if every pleasure is good, some good must also be pleasure. In particular statements the affirmative premise must be convertible as particular, for if some pleasure is good, some good will also be pleasure.” See; Aristotle, *Aristotle: Categories. On interpretation. Prior analytics*. Trans. Cooke, H.P., Tredennick, H., (London: Harvard University Press, 1938), 203.
What is the O-Corner Interpretation and Does it Save the Traditional Square of Opposition?

To the best of my knowledge, no one involved in the discussion disagrees that the traditional square of opposition as depicted above and the immediate inference of conversion stem from Aristotle. I have already cited the relevant passages where Aristotle plainly elucidates Conversion and all the other relations. Yet, whether Aristotle is to be credited for the following immediate inferences is far from being uncontroversial. Since those can be found in any medieval, as well as, modern textbook⁴, I shall define the rest of immediate inferences without attributing them to either Aristotle or any other logician.

The inference of Contraposition allows one to interchange the subject term and the predicate term in A and O form statements if one replaces both terms with their complementary terms⁵. The complementary term is generally achieved in English by putting the prefix “non”⁶ in front of the term, i.e., the complementary term of, say, “man” is “non-man”. To formalize it, \(\overline{P} \) is the complementary of \(P \). Thus, contraposition validates the following inferences:

\[
\begin{align*}
\text{SaP} & \rightarrow \overline{P} \alpha S \quad \text{(Contraposition 1)} \\
\text{SoP} & \rightarrow \overline{P} \alpha \overline{S} \quad \text{(Contraposition 2)} \\
\text{SeP} & \rightarrow \overline{P} \alpha \overline{S}^7 \quad \text{(Contraposition per accidens)}
\end{align*}
\]

⁶ Sometimes, the prefixes “un” or “in” do the job as well.

⁷ It is “per accidens” because the inference of subalternation is also used to infer this: firstly, from “Every P is Q” to “Some P is Q” by subalternation, then, from “Some P is Q” to “Some Q is P” by Conversion 2.
Obversion is the inference that validates the entailment from an affirmative statement to its negative counterpart (or vice versa) if the predicate term is replaced with its complementary term.

\[SaP \rightarrow Se\overline{P} \quad \text{(Obversion 1)} \]
\[SeP \rightarrow Sa\overline{P} \quad \text{(Obversion 2)} \]
\[SiP \rightarrow So\overline{P} \quad \text{(Obversion 3)} \]
\[SoP \rightarrow Si\overline{P} \quad \text{(Obversion 4)} \]

Inversion is less common than the immediate inferences\(^8\). It states that for A and E form statements, their subalterns are allowed to be inferred, even when both the subject terms and predicate terms are replaced with their complement terms:

\[SaP \rightarrow S\overline{i}P \quad \text{(Inversion 1)} \]
\[SeP \rightarrow S\overline{o}P \quad \text{(Inversion 2)} \]

Since the discussion of to what extent these rules can be attributed to Aristotle has not been settled down yet, I shall use the generic name “Traditional logic”, instead of “Aristotelian logic”, to refer the traditional square of opposition as stated above together with the collection of four immediate inferences.

In the eye of the modern logician, traditional logic is inconsistent. It leads one to derive falsehood from truth. The focus of the modern criticisms is the relation of Subalternation, although it extends to cover all immediate inferences and the relations in traditional logic, except for Contradictories. The inconsistency comes in sight when the logician deals with empty terms, the terms whose extension is empty (\([S] = \emptyset\))\(^9\). Inconsistencies can be derived in a couple of ways:

1) The statement “Every chimera is monster” is written in modern notation as \(\forall x(Cx \rightarrow Mx)\) and reads “for all x, if x is a chimera, x is monster.” This statement is vacuously true, on the grounds that there is no chimera, meaning that \([C] = \emptyset\). By Subalternation 1, “Every chimera is monster” implies “Some chimera is monster”, which is written as \(\exists x(Cx \land Mx)\) and reads “there is at least one thing which is both chimera and monster”. This is false, simply because \([C] = \emptyset\). Thus, the relation of Subalternation yield falsehood from truth. Modern classical logic invalidates the inference \(\forall x(Cx \rightarrow Mx) \rightarrow \exists x(Cx \land Mx)\), while in traditional logic \(CaM \rightarrow CiM\) is regarded as valid.

2) Vacuously true statements might be confusing. Yet, similar inconsistencies can be derived

\(^9\) The double square-brackets refer, henceforth, to the extension of the term put between them.
from non-vacuously true statements, as well. “No logician has proved Goldbach’s conjecture (∀x(Lx → ¬Gx))” is true. By Conversion 1, “No one who has proved Goldbach’s conjecture is logician (∀x(Gx → ¬Lx))” must also be true and by Subalternation 2, “Some who has proved Goldbach’s conjecture is not logician” can be deduced: ∃(Gx ∧ ¬Lx), which reads “there is at least one thing (person) who has proved Goldbach’s conjecture and is not logician”, which is obviously false. Thus, traditional logic leads from the true statement that “No logician has proved Goldbach’s conjecture” to the false statement that “Some who has proved Goldbach’s conjecture is not logician”. Note that modern classical logic validates Conversion 1 as used in this proof: ∀x(Lx → ¬Gx) → ∀x(Gx → ¬Lx). The problematic inference appears to be, again, the relation of Subalternation. Similar counter-examples against the relation of Subalternation can be found, among many others, for example, in the Kneales10, Strawson11, Copi12 or Morrison13.

3) Hitherto, in our criticism, the truth value of A and E statements, when [S] = Ø, is evaluated according to the modern interpretation. Let us assume, in this instance, that an A statement is false when [S] = Ø. “Every chimera is monster” is, then, false. By Contradiction 1, “Some chimera is not monster” must be true. However, it is false because ∃x(Cx ∧ ¬Mx) implies that [C] = Ø.

4) Another aspect of the same problem, which is mostly neglected in such discussions, is that of universal terms, such as “being” or “existent”. The extension of a universal term contains everything in the universe (of discourse). Thus, its complementary term would be empty. Similarly, the complementary term of an empty term is a universal term. For instance, the extensions of “non-chimera” and “non-unicorn” are identical, since they both contain everything in the universe. Let us consider the statement that “Every human is being”. By Contraposition 1, it becomes “Every non-being is non-human”. “Some non-being is non-human” is implied by Subalternation 1, meaning that “there is at least one thing which is non-being and non-human”. The immediate inference of Inversion also might yield problems regarding universal terms. “Every being is existent” implies “Some non-being is non-existent” by Inversion 1.

Therefore, the relations of Subalternation result in inconsistencies when a categorical statement contains empty subject or predicate term. For the modern logician, in traditional logic there is “something wrong”14. It contains “contradictions and absurdities”15 and has been shown to be “confused and inconsistent”16.

From the beginning of 11th century to the recent times, logicians have tried to save the traditional

11 Peter Frederick Strawson, Introduction to Logical Theory (New York: Routledge, 2011).
14 Copi et al., Introduction to Logic: Study Quide, 182.
square with all its oppositions defined by Aristotle from the logical disaster called inconsistency. One favored and, as far as we know, historically first solution is to distribute existential import among the corners of the square such that it is not possible anymore to derive any inconsistency within the logical system. What is known as O-Corner interpretation of the traditional square of opposition is one where the right side of the square, i.e., the O and E-corners, do not carry existential import, while their affirmative counterparts, i.e., the A and I corners do. The motivation behind this kind of solution is, most probably, that it manages to preserve the extensional bivalent nature of traditional logic, which is also of highest importance for modern classical logic.

Here I will advocate three claims: Firstly, that what I call the Abelardian-Seurenian system is also an O-Corner interpretation and secondly that it is has the same logical power as the main version of O-Corner interpretations originated from Ockham and supported and developed by modern logicians. Thirdly, I will argue that it saves the traditional square of opposition better than the main version of O-corner Interpretation.

1. The O-Corner Interpretation of Traditional Square of Opposition

To be able to evaluate these attempts, in accordance with Chatti and Schang17, each corner shall be formalized in modern notation, once with import and once without import, so that these notations could help to evaluate the consistencies of the system. The subscript imp! shall be understood as that that statement has existential import and the subscript imp? as that that statement has no explicit existential import. Thus18;

<table>
<thead>
<tr>
<th>Aimp!</th>
<th>Aimp?</th>
<th>Eimp!</th>
<th>Eimp?</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\exists x(Sx) \land \forall x(Sx \to Px))</td>
<td>(\forall x(Sx \to Px))</td>
<td>(\exists x(Sx) \land \forall x(Sx \to \neg Px))</td>
<td>(\forall x(Sx \to \neg Px))</td>
</tr>
<tr>
<td>Iimp!</td>
<td>Iimp?</td>
<td>Oimp!</td>
<td>Oimp?</td>
</tr>
<tr>
<td>(\exists x(Sx \land Px))</td>
<td>(\neg \exists x(Sx) \lor \exists x(Sx \land Px))</td>
<td>(\exists x(Sx \land \neg Px))</td>
<td>(\neg \exists x(Sx) \lor \exists x(Sx \land \neg Px))</td>
</tr>
</tbody>
</table>

According to the logical analysis Chatti and Schang19 did with the formulae just provided, only three squares have managed to keep all the oppositions intact without any inconsistency and thus survived the test. Those squares are; 1) A and I carry existential import and E and O do not. 2) Universals are the only ones that carry existential import. 3) While negatives carry existential import, positives do not, which is the exact opposites of the first square. Not surprisingly, the first is the one that is historically proposed and discussed in the literature, which will be the main subject for the present paper. The question of which corners of the

17 Saloua Chatti, and Fabien Schang, “The cube the square and the problem of existential import,” \textit{History and Philosophy of Logic} 34(2) (2013), 115.

18 In their articles, some statements are formalized slightly different, however, those that Chatti and Schang provide and the ones provided here are all logically equivalent.

19 Chatti, et all., “The cube the square and the problem of existential import”.
What is the O-Corner Interpretation and Does it Save the Traditional Square of Opposition?

traditional square and which sentences\(^{20}\) carry existential import play a central role in both modern and medieval discussions.

1.1 Abelardian Seurenian System

Although Church declares the 14th-century logician William of Ockham as “the first logician to consider the question of existential import or to propose a tenable theory of it”\(^{21}\), Seuren maintains that the 11th-century logician Abelard “was [...] probably the first, after Aristotle, to be aware of the problem”\(^{22}\) and accuses Church of being “keen to erase Abelard’s heritage from history”. The Kneales seem to agree with Seuren that Abelard is to “have the credits of being the first to worry about the traditional square of opposition”, but add that “he did not work out all the consequences of the change he advocated.”\(^{23}\)

Abelard’s idea has never been seriously discussed until nine centuries later, Seuren\(^{24}\) proposed the same particular solution, (as he claims) independently of Abelard. Even then, it is still doubtful to profess that this view got enough attention from modern logicians. One reason may well be, as Parsons contends, that “Abelard’s writing was not widely influential.”\(^{25}\) Secondly, in Abelard’s works, it seems that the system is not fully developed as the Kneales\(^{26}\) state. Thirdly, Horn thinks that “Abelard’s results [...] were apparently too counter intuitive to be taken seriously.”\(^{27}\)

Let us, now, turn to the details of the system proposed by *Dialectica* of Abelard and Seuren\(^{28}\). The first step Abelard took is to differentiate external negation from internal negation. External negation is the one which is put in front of the whole sentence. “Not every S is P” is the externally negated “Every S is P”. Internal negation, as can be understood from the text, is the one that negates the copula of the sentence. Thus, “Every S is not P” is the internally negated “Every S is P”. External negation shall be symbolized with the usual negation sign “¬” and internal negation

20 Henceforth, I shall use the word ‘sentence’ to refer to a particular structure of surface grammar, while by the words ‘statement’ or ‘proposition’, I shall mean the proposition underlying the sentence. As will be seen later, some different sentences just defined might have the same underlying proposition for some logicians. For the issue at hand, this might even be understood as having the same truth condition: if two sentences p and q have the same underlying proposition, then p and q are true together in a particular state of the world, and are false together in another particular state of the world.

23 Kneale, et all., *The Development of Logic*, 211.

26 Kneale, et all., *The Development of Logic*.

28 Seuren, “The logic of thinking”.

with the tilde sign “∼”. For Abelard, these two negations have different logical powers, hence must not be regarded as the same.

“The negation therefore has a different power if it is put in front [of the proposition] than if it is put in between. (my translation)”

Thus, Abelard distinguishes not four, but six categorical sentences:

<table>
<thead>
<tr>
<th>Syllogism</th>
<th>Sentence</th>
<th>Symbol</th>
<th>Syllogism</th>
<th>Sentence</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>A:</td>
<td>(Every S is P)</td>
<td>SaP</td>
<td>I:</td>
<td>(Some S is not P)</td>
<td>∼SiP</td>
</tr>
<tr>
<td>I:</td>
<td>(Some S is P)</td>
<td>SiP</td>
<td>A:</td>
<td>(Not every S is P)</td>
<td>∼SaP</td>
</tr>
<tr>
<td>∼A:</td>
<td>(Every S is not P)</td>
<td>∼SaP</td>
<td>∼I:</td>
<td>(Not some S is P)</td>
<td>∼SiP</td>
</tr>
</tbody>
</table>

A close scrutiny with respect to these six sentences of Abelard reveals some peculiarities of both modern and traditional logic. In modern logic, ∼SaP and ∼SiP appear to express the same proposition, since ∼∀ is defined as ∃¬ and ∼∃ as ∀¬, which is generally called Law of Quantifier Negation. Thus, modern logic allows the inference from “Not every” to “Some not” (and vice versa) and from “Not some” to “Every not” (and vice versa). Thus we define:

 ∼SaP ↔ ∼SiP (Quan Neg)
 ∼SiP ↔ ∼SaP (Quan Neg)

The attitude of traditional logic toward Quan Neg is highly complicated. In Apeleius’ work (2nd century), one might observe that he merely plays with the idea under the name of ‘equipollency’. He uses internal negations, ∼SaP on the E-corner and ∼SiP on the O-corner in the square of opposition and just after the representation of the square, he claims one can get the same propositions if one externally negates their contradictories.

“Every proposition becomes equipollent with its alternate [contradictory opposite], if it takes on a negative particular at the beginning- for example, supposing that it is the universal dedicative: Every pleasure is good, if a negation prefixed to it, it will become Not every pleasure is a good, which is sound to just the same extent as was its alternate: Some pleasure it not a good” 30

Thus, “Apuleius [...] was well aware of [...] the Laws of Quantifier Negation” 31. Parsons32 alleges that Boethius uses both ∼SiP and ∼SaP in his works. If we assume that traditional logic validates Quan Neg, there arises four squares with identical oppositions and entailments as the one in Figure 1 (see Figure 2).

31 Horn, A natural history of negation, 25.
32 Parsons, “The traditional square of opposition”.
As might be seen in Figure 2, with employing Quan Neg, E-corner is divided into \(\sim SaP \) and \(\sim SiP \) and O-corner into \(\sim SaP \) and \(\sim SiP \). However, Abelard’s attitude toward Quan Neg is different from both modern and traditional logic. Firstly, he rejects the idea that internal negation changes the truth value of a statement:

“Sic quoque in cathegoricis propositionibus ea tantum propria contradictio ac recte dividens cuilibet affirmationi videtur quae negatione[m] praeposita totam eius sententiam destruit.” 33

“Thus also with respect to categorical propositions the only right and correctly dividing negation of an arbitrary affirmation seems to be that which destroys its entire meaning by putting the negation sign in front of it. (my translation)”

Thus, with respect to external and internal negations, he adopts the Stoics’ understanding that external negation is the only one that inverts the truth value of the sentence in front of which it is put. The internal negation together with changing the quantity of the sentence does not suffice to change truth value. Thus, external negation is the only contradiction inducing negation. His attitude toward negations lets him reject Quan Neg:

33 De Rijk, Petrus Abaelardus, Dialectica. First Complete Edition of the Parisian Manuscript, 176
Therefore the proposition saying “Every man is not white” doesn’t seem to be the same as “Not every man is white”; and “Some man is not white” is not the same as “Not: Some man is white”. [...] For if the state of affairs is such that men do not exist at all, then neither the proposition ‘Every man is a man’ is true nor ‘Some man is not a man’. (my translation)

Since from the previous quote we know that SaP and $\neg SaP$ are contradictories, we understand that SaP and $\neg SiP$ cannot be contradictories. Thus, we can infer easily that $\neg SaP$ does not imply $\neg SiP$ and that he explicitly rejects Quan Neg here and he further provides the relation that SaP and $\neg SiP$ can be both false, meaning that they are contraries. In this system, thus, what carries existence is not the copula but the word “Omni [Every]”:

“Cum auten Quidam homo non est homo semper falsa sit atque Omnis homo est homo homine non existente, patet simul easdem falsas esse: unde nec recte dividentes dici poterunt.”

“But since “Some man is not a man” is always false, if men do not exist, and equally also “Every man is a man”, both propositions evidently are false together, so that they cannot be said to be properly dividing. (my translation)”

Various interpretations suggest the same conclusion as well: “We must therefore suppose that in his [Abelard’s] view it is the word Omnis [Every], which introduces existential import.” Horn agrees that “omnis” involves existence.

34 Ibid, 176.
35 Ibid, 176
36 Kneale, et al., The Development of Logic, 211
37 Horn, A natural history of negation, 26.
Given that the word “Omnis” carries existential import unless it is externally negated, contradictory relations between “SaP and ¬SaP” and “SiP and ¬SiP”, Subalternation relations between “SaP and SiP”, “¬SaP and ¬SiP” and “¬SaP and ¬SiP” together with the contrary relations just given in the quotation above reveal the relations in the Figure (3).38

Seuren’s way to represent those entailments is to use an octagon of opposition. However, its readability is quite low and it is highly demanding to compare his octagon of opposition with the traditional squares in Figure 2. Thus, sacrificing the representations of some of the entailments, four squares corresponding to those in Figure 2 shall serve better for the present purpose (see Figure 3). In Abelardian-Seurenian system Quan Neg is only partly rejected. While the entailments that ¬SiP → ¬SaP and that ¬SaP → ¬SiP are preserved, the other entailments that ¬SaP → ¬SiP and that ¬SiP → ¬SaP are given up.

The system explained here and what Seuren39 proposes is equivalent to each other. What Seuren40 contributes to the system is to provide the truth conditions of quantifiers in terms of class inclusion as follows:

“SOME: [\([S]\) \cap [\([P]\)]] = \emptyset”

38 Seuren in “The logic of thinking”, calls this system “Aristotelian-Abelardian” since he thinks that this is Abelard’s interpretation of Aristotelian. However, whether either Aristotle or Abelard constructs the system as exactly as explicated here is controversial. Thus both to be on the secure side and to credit Seuren (since he also proposes the same system in “The logic of thinking”, independently of Abelard), I shall call it “Abelardian-Seurenian”.

39 Seuren, “The logic of thinking”.

40 Seuren, The Logic of Language: Language From Within, volume 2.
NO [Not some]: \([\text{[S]}] \cap \text{[P]} = \emptyset\)

ALL [Every]: \([\text{[S]}] \subseteq \text{[P]}\) and \([\text{[S]}] = \emptyset\)\(^{41}\)

Thus, “what Abelard proposed was that, for cases where \([\text{[F]}] = \emptyset\), A- and A* \([\sim A]\)-type sentences, as well as I- and I* \([\sim I]\)-sentences, should be considered false, while their negations should be true"\(^{43}\) since the external negation “\(\sim\)” is the only truth value inverting negation. These statements must be formalized in modern notation as follows:

\[
\begin{array}{|c|c|c|c|}
\hline
\text{A:} & \exists x(Sx) \land \forall x(Sx \rightarrow Px) & \sim\text{I:} & \forall x(Sx \rightarrow \neg Px) \\
\sim\text{A:} & \exists x(Sx) \lor \exists x(Sx \land \neg Px) & \sim\text{O:} & \exists x(Sx \land \neg Px) \\
\sim\text{A:} & \exists x(Sx) \land \forall x(Sx \rightarrow \neg Px) & \sim\text{I:} & \exists x(Sx \land \neg Px) \\
\hline
\end{array}
\]

With these formalization of propositions in modern notation, Figure 3(b) becomes the one in Figure 4, where, as can be clearly seen now, the E- and the O-corner do not imply the existence of their subject terms.

Although Seuren drastically rejects this, some logicians\(^{44}\) claim that for Abelard, affirmatives carry existential import and negatives do not (this idea will be explored in next section) and wed him to a traditional view of O-Corner Interpretation. However, this is now understandable with the help of modern notation and of representing the entailments with four squares, instead of one octagon, because in Figure 3(b) and Figure 4, it can be clearly seen the the E- and O-corners don’t carry existential import, while A- and I-corners do and Figure 3(b) is the only square where all the oppositions defined by Aristotle remain intact.

In rendering Abelard to the view of O-corner interpretation, Horn depicts the corresponding square of opposition exactly as the one in Figure 4\(^{45}\) and in rejecting that Abelard advocates this

\(^{41}\) Ibid., 144-145.

\(^{42}\) “F” is the subject term of the proposition here.

\(^{43}\) Ibid., 174.

\(^{45}\) Horn, “All John’s children are as bald as the king of France: Existential import and the geometry of opposition”, 157.
view, Seuren claims that for Abelard, $\sim A$ and $\sim I$ do carry existential import. It is evident now, Horn discusses which proposition underlies O-corner, not which sentence. Thus, his claim should be understood as that the O-corner (of the square that keeps all the oppositions or assuming that Figure 4 is the Abelardian Square) should bear the proposition that $\sim \exists x(Sx) \lor \exists x(Sx \land \sim P x)$. He does not discuss in Horn which sentences should bear this proposition, while Seuren discusses which sentences bear which proposition.

Thus, it seems that while claiming that affirmatives carry and negatives do not, what these logicians have in their minds is that the Abelardian Square of Opposition is the on Figure 3(b). It wouldn't be misleading to think that Abelard thinks the propositions in O- and E-corner do not carry existential import, if the square in Figure 3(b) is considered. Another point to support the idea that for Abelard, only affirmatives have existential import is that, $\sim A$ and $\sim I$ do not have to be taken as negatives, because these statements can easily be obverted into affirmative ones without changing the truth conditions or underlying proposition by the immediate inference of Observation: “Some human is not white” and “Some human is non-white”. All statements except $\sim A$ and $\sim I$ can be regarded as affirmatives. Thus, if one assumes that Figure 3(b) is the Abelardian square of opposition, claiming that for Abelard negatives do not carry existential import while affirmatives do is not to be regarded as misleading.

This particular arrangement of existential import and rejecting Quan Neg in favor of one way entailments helps to solve the problem and to save the relation of Subalternation. Let us check if any inconsistencies can be derived, depending on the counter-examples given in the previous chapter:

1) In Abelardian-Seurenian system, one cannot derive from the truth of “Every chimera is monster” to the truth of “Some chimera is monster”, since “Every chimera is monster” is already false, because SaP has existential import.

2) From the truth of ” No logician has proved Goldbach conjecture” to the truth of “There is at least one logician who proves the Goldbach conjecture” cannot be derived. Firstly, “No logician has proved Goldbach conjecture” is true, because $[[L]] \cap [[G]] = \emptyset$. “No one who has proved the Goldbach conjecture is logician” is also true, because $[[L]] \cap [[G]] = [[G]] \cap [[L]] = \emptyset$. However, at this point, the entailment from the truth of “No one who has proved the Goldbach conjecture is logician” to the truth of “There is at least one who has proved the Goldbach conjecture and is logician” is not valid, because the subaltern of the former proposition is ” not every one who proved the Goldbach conjecture is logician”, not “Some who proved the Goldbach conjecture is not logician” and the former is formalized in modern notation as $\sim \exists x(Gx) \lor \exists x(Gx \land \sim Lx)$, from which one cannot derive $\exists(Gx)$.

3) “Every chimera is monster” is false in this system. Its contradictory, however, is not “Some chimera is not monster”, but “Not every chimera is monster”. Thus we cannot derive the truth

47 Horn, “All John’s children are as bald as the king of France: Existential import and the geometry of opposition.”
of the former but that of the latter and the latter has no existential import, to the effect that declaring “Not every chimera is monster” as true does not yield inconsistency.

4) “Every being is existent” is true. By Contraposition 1, it becomes “Every non-existent is non-being”, which is false. Similarly, “Every being is existent” becomes “Some non-existent is non-being” by Inversion 1, which is also false. Thus, in Abelardian-Seurenian system, Contraposition and Inversion must be given up for consistency.

Consistency achieved. But at what cost? It has already been shown that contraposition and inversion must be given up to secure the consistency and obversion and conversion still holds. However, contraposition and inversion are not the only ones to be given up, but also some intuitiveness. For example, “Some unicorns are horse” and “Some unicorns are not horse” are both false. The other counter-intuitive examples come in when we consider what rejecting Quan Neg amounts to in natural languages. While “Not every chimera is monster” is true, “Some chimera is not monster” is false. Moreover, the only state of the world where ∼SaP and ∼SiP have different truth value is when [(S)] = Ø. Under any condition, under any state of the world, ∼SaP and ∼SiP have the same truth value. So is the case for ∼ SaP and ∼SiP. Rejecting Quan Neg seems, thus, an ad hoc solution designed for a particular situation, namely [(S)] = Ø. It makes no use for anything other than this particular problem.

Nevertheless, for any logical system purporting to account for logical inferences, being counter-intuitive and having less logical tools must be favored over being inconsistent. While traditional logic seems inconsistent, Abelardian-Seurenian Logic casts off the inconsistencies resulting from employing empty term into the system at the cost of the immediate inferences of contraposition and inversion and yielding some counter-intuitive results.

1.2 Main Version of the O-Corner Interpretation

Klima claims that “Abelard’s distinction did not really catch on, and gave way to stipulation that these two form of negation [external negation and internal negation plus changing the quantity] are equivalent and […] equally canceling its existential import”49, that is, that logicians after Abelard do not reject Quan Neg. They reject the Stoics’ and Abelard’s understanding of negation that internal negation together with changing the quantity of the sentence does not establish the contradiction. For the proponents of this system, “Not every human is white” and “Some human is not white” are equivalent and both are the contradictories of “Every human is white” as the intuition suggests and the negations in the former two statements cancels the existential import. Thus, the quintessence of the resulting system is that negatives do not carry existential import, while affirmatives do. Its proponents adopt the motto that “existence goes with quality, not quantity”, where “quality” refers to the affirmative-negative statements, and “quantity” to the universal-particular statements.

48 Note, however, that these sentences are also both false in the first order predicate logic.
What is the O-Corner Interpretation and Does it Save the Traditional Square of Opposition?

Although Horn traces the history of this kind of solution back to Apuleius in the 2nd century, the 14th century logician William of Ockham is generally thought be the first to propose it, though he does not explicitly state the problem. In Summa Logicae II.3, he seems to deal with the problem:

“it is sufficient for the truth of such a proposition [a particular proposition] that the subject and predicate supposit for some same thing if the proposition is affirmative and a universal sign is not added to the predicate [...]. On the other hand, if such a proposition is negative, then it is required that the subject and predicate not supposit for all the same things. In fact, it is required either that the subject supposit for nothing or that it supposit for something for which the predicate does not supposit. [...] Thus, if there are no men and if there are no animals except for a donkey, then this con- sequence is not valid: ‘A man is not a donkey; therefore some animal is not a donkey’”.

Similar passages that serve the same purpose can also be found in some other late medieval logicians in 14th century, such as Buridan and Burlay and a group of medieval logicians. According to Ashworth, this approach is lost after the 16th century. In the 19th century, Keynes doesn’t even mention this particular solution while exploring the possible ways out of this problem. Only at the beginning of the 20th century logicians, for example Caroll and Johnson, have begun expressing this idea again, however, it became fashionable only after 1950s with Moody and Thomson. More recently, this idea was advocated by Wedin, Klima, Parsons and Read.

The present system leads us back to the Figure 2, where Quan Neg is accepted and all the oppositions remain intact. The only difference is that the E and O-corners do not carry existential import any more since they are canceled by negation. When \([F] ≠ \emptyset\), A and I are false and E

50 Horn, “All john’s children are as bald as the king of France: Existential import and the geometry of opposition.”
54 Ashworth, “Existential assumptions in late medieval logic”.
55 Keynes, Studies and Exercises in Formal Logic.
58 Moody, Truth and Consequence in Mediaeval Logic.
59 Thomson, “On Aristotle’s square of oppositions”.
63 Read, “Aristotle and Lukasiewicz on existential import”.
and O are true. Thus, since Quan Neg is accepted in this view, the proposition that Abelard reserved for ¬SaP is reserved for both ¬SiP and ¬SaP and also both ¬SiP and ¬SaP carries the proposition that Abelardian reserved only for ¬SiP. Thus modern formalization of the sentences in this view should be as follows:

\[
\begin{align*}
A-Corner: & \quad A_{\text{impl.}} = \exists x(Sx) \land \forall x(Sx \rightarrow Px) \\
E-Corner: & \quad E_{\text{impl.}} = \forall x(Sx \rightarrow \neg Px) \quad (= \sim A = \sim I) \\
I-Corner: & \quad I_{\text{impl.}} = \exists x(Sx \land Px) \\
O-Corner: & \quad O_{\text{impl.}} = \sim \exists x(Sx) \lor \exists x(Sx \land \sim Px) \quad (= \sim I = \sim A)
\end{align*}
\]

These propositions result exactly in the square in Figure 4. With these formalizations, let us try to derive some inconsistencies using empty terms within the system.

1) Since “Every chimera is monster” is false, the truth of its subaltern “Some chimera is monster”, which implies the existence of at least one chimera, cannot be derived.

2) “No logician has proved the Goldbach conjecture” is true. Its subaltern “Someone logician has not proved the Goldbach conjecture” is also true. The truth of the O statement that “Someone who has proved the Goldbach conjecture is not logician” is implied by Conversion 2. However, while in modern logic this statement implies the existence of at least one thing that has proved the Goldbach conjecture, in this system, the O-corner does not carry existential import and does not imply the existence of its subject term.

3) Since the contradictory of an existential import carrying A statement does not imply the existence of its subject term, the inference from the falsity of “Every chimera is monster”, the truth of “there is at least one chimera” is not a valid inference.

4) “Every human is being” is true. By Contraposition 1, “Every non-being is non-human” must be true, but it is false, for SaP has existential import. Thus, in this system while Contraposition 1 must be given up to secure consistency, Contraposition 2 still holds.

5) Other than Contraposition 1, both of Inversions and Obversion 2 and 4 must also be given up. For example, “Some chimera is not monster” is true, for ¬SiP is true when [[C]] = Ø. By Obversion 4 it implies that “Some chimera is non-monster”, which is false, because it is an affirmative and affirmatives imply the existence of their subject term. Lastly, consider the true SaP statement that “Every being is existent”. Inversion 1 implies that “Every non-being is non-existent”, which is false. Ashworth and Parsons claims that these rules are already explicitly rejected by medieval logicians.

The price to be paid for the consistency is to give up all the immediate inferences except for Conversions, Contraposition 2 and Obversion 1 and 3. Counter-intuitiveness strikes, however, when one considers what rejecting Obversion 2 and 4 amounts to. “Some man is not just” is not

65 Parsons, “The traditional square of opposition”.
logically equivalent to “Some man is unjust”. Seuren’s example reveals the oddity more clearly: while “Some mermaids are not married” is true, “Some mermaids are unmarried” is false. Moreover, intuition suggests that “Some chimera is not chimera” must be false since it is self-contradictory. However, in O-Corner Interpretation, it is true.

1.3 Problem of Providing a Unified Semantics:

At this point, a brief detour must be taken to illustrate the challenge proponents of this view face when aiming to provide a uniform semantics for its quantifiers whose meanings apparently depends on their relations to negation in a sentence. In this system, obversion must be given up for while “Some chimera is not monster” is true, “Some chimera is non-monster” must be false because it is affirmative and has existential import. This creates a problem for a logical system. The quantifiers “Every” and “Some” cannot easily have a unified semantics because the meaning of a sentence depend on how the quantifiers and “Not” are related. Seuren rightly appreciates if “one takes [SaP] to be true in case [[F]] ≠ Ø and [[F]] ∩ [[G]] = Ø, then [∼SaP] must be taken to be true just in case [[F]] ≠ Ø and [[F]] ∩ [[G]] = Ø, which gives both [SaP] and [∼SaP] existential import”. Parsons seems to agree that “it is apparent that the particular quantifier ‘Some’ and the negation sign ‘not’ now have independent meanings, and that the truth conditions for particular negative propositions are determined by how these meanings interact with one another”.

The first attempt to give a uniform and systematic account is provided by Klima and, later on, in Klima.

Aside from the technical and formal details, the core of the idea is to use the devices called ‘restricted variables’ and ‘zero-entity’. Restricted variables are “variables, which take their values not from the whole universe of discourse, but from the extension of an open sentence”. For instance, the variable ‘x. Hx’ takes its values from the extension of the open sentence ‘Hx’. Let ‘H’ stand for “human”, and ‘W’ stand for “white”, then W(x. Hx) ranges not over the whole universe, but over the extension of “human”. If the extension of “human” is empty, then it takes, as its value, the zero-entity, which is not in the universe of discourse, to the effect that it makes the sentence false. Additionally, if ‘H’ stands for “human”, then [∼H] stands for “non-human”, meaning that [∼H] stands for anything else in the universe except for humans.

Let us, now, check if the difference between the scopes of negations in the sentences “Some chimera is not monster” and “Some chimera is non-monster” is really appreciated in this semantics or not. The former should be formalized as (∃x. Cx) ∼ (M(x.Cx), while the latter as (∃x. C x)(∼ M (x.C x)). Since in (∃x. C x) ∼ (M (x.C x), C x is empty, (M(x.Cx)) takes zero-entity as its value.

67 Seuren The Logic of Language: Language From Within, 169.
68 Parsons, “Things that are right with the traditional square of oppositions”, 6.
69 Gyula Klima, Ars artium: essays in philosophical semantics, mediaeval and modern, (Budapest: Instute of Philosopher, Hungarian Academy of Sciences, 1988)
70 Klima, John Buridan
71 Klima, Ars artium: essays in philosophical semantics, mediaeval and modern, 12.
and it is false. If \((M(x.Cx)) \) is false, then \(\neg (M(x.Cx)) \) is true. \(\exists x.Cx \) requires that \(\neg (M(x.Cx)) \) must be true at least for one substitution, which makes the whole statement \((\exists x.Cx) \sim (M(x.Cx)) \) true. In the latter sentence, \((\exists x.Cx)(\neg M(x.Cx)) \), since \(Cx \) is empty, \((\neg M(x.Cx)) \) takes the value of zero-entity and is false. Thus, \((\exists x.Cx)(\neg M(x.Cx)) \) must be false because existential quantifier requires that there must be at least one substitution that makes \((\neg M(x.Cx)) \) true. Similar symbolization and proofs can also be given for the universals. Thus, Klima concludes that “it provides us with a uniform, systematic account of relative scope relations of negation an all sorts of determiners in categorical propositions.”72 Klima also believes that this semantics gives a proper account of why “Some chimera is not chimera” is true, while it seems self-contradictory. The essence is that “Some chimera is non-chimera” is the self-contradictory one, not “Some chimera is not chimera”. While the former is symbolized as \((\exists x.Cx)(\neg C(x.Cx)) \), the latter \((\exists x.Cx)(\sim C(x.Cx)) \). However, although in the formalism he provides, the difference of scopes of negations is promising and suggestive, whether any formalism is able to correct the natural intuition still remains an open question awaiting to be answered.

In similar vain, but in much more complicated formalism Parsons73 provides another semantics, which also boils down to one with restricted variables given by Klima, if his strained formalism is modified. His semantics is given in terms of truth values according to the assignments to variable. A sentence is \(\sigma \)-true, when the assignment \(\sigma \) assigns things to the variables. In Parsons, every categorical statement has the form of “\(x=y \)”. Both variables ‘\(x \)’ and ‘\(y \)’ must be bound by either (Some) or (Every) or (No). For each quantifier, he provides two cases where the sentence is true; one when its subject terms is empty and one when its subject term is not empty. The crucial difference is that while in Klima’s semantic, when the subject term is empty, zero-entity is assigned to the variable, in Parsons if the subject term is empty, the assignment \(\sigma \) assigns nothing at all to the variable and he claims “if \(\sigma \) assigns nothing to ‘\(x \)’ or to ‘\(y \)’, ‘\(x=y \)’ is not \(\sigma \)-true.”74 However, it seems that the contrast between “nothing at all” and “zero-entity” does not make any difference for Parsons, since he claims that “this method of handling common [general] terms so as to get the right truth conditions with respect to existential import is equivalent to a method first proposed (so far as I know) in Klima (1988)”75

Seuren76 raises critiques for both semantics. The focus of the problem is ‘zero-entity’. He poses a paradox similar to Russell’s paradox of naive set theory. He defines a predicate “is zero-entity”. Then, “\(\emptyset \) is zero-entity” must be false since when \(\emptyset \) is assigned to variable, it delivers falsity. Moreover, he asks whether \(\emptyset \) belongs to the extension of the predicate “is zero-entity”. “If it does, why it produces falsity? If it does not, why it is an admissible substitution within the range of [“is zero-entity”]? ”77. For Parsons’ semantics, the situation is as complicated as his formalism, since he does not employ ‘zero-entity’ explicitly. If his “assigning nothing at all to a variable” is equal

72 Klima, John Buridan, 151.
73 Parsons, “Things that are right with the traditional square of oppositions” and Parsons, Articulating medieval logic.
74 Parsons, “Things that are right with the traditional square of oppositions”, 7.
75 Parsons, Articulating medieval logic, 105.
76 Seuren, “Does a leaking o-corner save the square?”
77 Ibid, 135.
to “assigning zero-entity”, then he must face the same criticism. However, if we take “assigning nothing” literally, then, consider the case where in ‘x=y’, an entity A is assigned to ‘x’ and nothing is assigned to ‘y’. Then what results from this assignment is ‘A=y’. This must be false according to Parsons. However, ‘A=y’ is not a proposition, nor even a sentence. It is just a sentential function sentential functions do not have a truth value.

The ontological nature of ‘zero-entity’ is not clear in Klima. The only clarifications he provides about it are that “the only requirement concerning [∅] is not an element of the universe of discourse of that model” and that “a term has the zero-entity as its value means no more nor less, than that the term refers to nothing.” However, Seuren seems to be right in that ‘A=y’ is a sentential function and cannot have a truth value and thus, he concludes that only “with the introduction of the ontologically vicious element ∅, uniform definitions become possible. LOCA [O-Corner Interpretation] is, therefore, spoiled by its ontology.”

Thus, while one must accept the ontological oddity of zero-entity, it seems to an impartial reader that both semantics save the traditional square of opposition with all its oppositions. However, Seuren renders it “logically and ontologically vicious.”

2. Abelardian-Seurenian Logic vs O-Corner Interpretation

Historical adequacy and roots of both systems have already been lengthily discussed in the literature. Yet, the analysis of their logical merits somehow remained perfunctory. Let us now try to compare the systems.

The fact that Obversion 2 and 4 do not hold in O-Corner Interpretation gives rise to two more propositions; $Sa\bar{P}$, $Si\bar{P}$. Note that since Aberlardian-Seurenian system validates Obversions, in that system $\sim SaP$ and $Sa\bar{P}$ are equal, just as $\sim SiP$ and $Si\bar{P}$. According to the analysis in Read (2015), $Sa\bar{P}$ and $Si\bar{P}$ are affirmative propositions and thus carry existential import. These propositions can be formalized in our notation as follows:

$Sa\bar{P}: \exists x(Sx) \land \forall x(Sx \rightarrow Px)$

$Si\bar{P}: \exists x(Sx \land \sim Px)$

<table>
<thead>
<tr>
<th>Abelian-Seurenian</th>
<th>O-Corner Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1.

Comparison of the sentences and propositions in both systems.

78 Klima, John Buridan, and Klima, Ars artium: essays in philosophical semantics, mediaeval and modern
79 Klima, John Buridan, 149.
80 Klima, Ars artium: essays in philosophical semantics, mediaeval and modern, 28.
81 Seuren, “Does a leaking o-corner save the square?”, 136.
These are, unsurprisingly, the propositions that are given to the sentence ¬SaP and ¬SiP respectively, in Aberlardian-Seurenian system. As yet, it should be clear that Abelardian-Seurenian system and O-Corner Interpretation have exactly the same set of propositions and these propositions have exactly the same relations to each other. This means that both systems have the same logical power. Table 1 offers a summary of propositions and sentences in both systems, which enables us to check all of them at a glance.

Thus, the antagonism between both systems does not depend on the question which corner carries which propositions (or which meaning), but on the question which sentence should bear which propositions. Since this is the case, we do not have to discuss the entailments among the propositions, in order to be able to favor one system over the other and the only point to discuss is how these sentences should be formalized. This provides us with the luxury of comparing these logical systems with modern classical logic and of appealing to the intuition in natural languages, which would be meaningless, if their logical power were unequal. However, neither natural languages nor classical predicate logic can help us in favoring one system over the other because what both suggest is different than the ones suggested by these systems.

As the saying goes “for all they that take the sword shall perish with the sword”. Ockham’s razor shall be employed against his own theory: thus, considering the ontological oddity of zero-entity and the unnecessary complicatedness of semantics for the main version of O-corner interpretation, Aberlardian-Seurenian system shall be favored in saving the traditional square of opposition.

Conclusion

In the first section, the traditional square of opposition has been described in detail and its weakness are pointed out. In section 2.1, the Abelardian-Seurenian system is explicated and it has been shown that it is actually an O-corner interpretation since the square which manages to keep all the oppositions intact does not endow its negative statement with existential import. Later, the system originated from Ockham and generally regarded as the O-corner interpretations is analyzed and the difficulty of providing a unified semantics for the main version of O-corner interpretation, Aberlardian-Seurenian system shall be favored in saving the traditional square of opposition.
Acknowledgement: I would like to thank Prof. Dr. Wolfgang Lenzen for reviewing the first draft of this paper and for helping me in translating Latin passages.

Conflict of Interest: The authors declare that they have no conflicts of interest

References

