Calvarial Hyperostosis Syndrome in an American Pit Bull Terrier
Amerikan Pit Bull Terrier bir Köpekte Calvarial Hiperostoeozis Sendromu

Damla HAKTANIR1, Ebru ERACVI YALIN2, Yalçın DEVECİOĞLU2, Alper DEMİRUTKU2, Aydın GÜREL1

1Department of Pathology, Istanbul University Faculty of Veterinary Medicine, İstanbul, Turkey
2Department of Surgery, Istanbul University Faculty of Veterinary Medicine, Istanbul, Turkey


Abstract

Calvarial hyperostosis syndrome (CHS), which has been recently defined in juvenile dogs, is a rare, non-neoplastic, proliferative bone disease characterized by the swelling of the skull. Until recently, it was mostly reported in young Bullmastiffs with a sexual preference for male dogs. The objective of this study was to describe the clinical and pathological aspects of the condition as a contribution to literature due to its rarity in dogs. The paper presents the first reported case of Calvarial hyperostosis in turkey. A four-month-old female American Pit bull terrier was presented to the veterinary physician with the complaints of painful swelling on the head, loss of appetite, lethargy and fever. Radiograph of the skull revealed diffuse thickening of the frontal and parietal bones and markedly increased bone opacity, and magnetic resonance imaging (MRI) scans revealed increased diploe thickness in all sequences. The preliminary clinical diagnosis of calvarial hyperostosis was confirmed by histopathology which revealed the presence of both immature woven bone and mature bone trabeculae separated by prominent basophilic cementing lines. The lesion is self-limiting, and most cases show spontaneous regression in few months, but in this case the patient was monitored until one year of age and no regression was seen.

Keywords: Calvarial hyperostosis, histopathology, clinical findings

Öz


Anahtar kelimeler: Kalvarial hiperostoeozis, histopatoloji, klinik bulgular

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Introduction

Calvarial Hyperostosis Syndrome (CHS) is a recently defined rare osteopathy characterized by non-neoplastic proliferation of the flat bones of the skull (Pastor et al., 2000; McConnell et al., 2006; Mathes et al., 2012). Clinically and histologically, it resembles craniofacial osteopathy and infantile cortical hyperostosis in humans (Pastor et al., 2000; Huchkowsky, 2002; Kamoun-Goldrat and Le Merrer, 2008; Varollo et al., 2012). Calvarial hyperostosis syndrome has been reported mostly in Bullmastiffs and case reports are available with respect to the presence of the disease in a Pit Bull Terrier and an English Springer Spaniel dog (Pastor et al., 2000; McConnell et al., 2006; Thompson et al., 2011; Mathes et al., 2012). The most prominent clinical manifestations are painful swelling of the skull bones, lymphadenopathy, eosinophilia and fever (Muir et al., 1996; Pastor et al., 2000; Thompson et al., 2011). Seizures, hydrocephalus, lameness and osteomyelitis are additional symptoms (Pastor et al., 2000; Thompson et al., 2011; Mathes et al., 2012).

To our knowledge, this is the first reported case of a dog with Calvarial Hyperostosis Syndrome in Turkey and we aimed to describe this case with its clinical and pathological aspects as a contribution to literature due to its rarity in dogs (Pastor et al., 2000; McConnell et al., 2006; Mathes et al., 2012) and to inform veterinary practitioners regarding the disease.

Case

A four-month-old female American Pit bull terrier was referred to the clinic of the Faculty of Veterinary Medicine, Department of Surgery with complaints of painful swelling to the head, loss of appetite, lethargy and fever. Clinical inspection revealed firm bilateral swelling of the parietal and frontal bones of the skull and diffuse edema extending to the right upper eyelid. (Figure 1a). Radiography of the skull revealed diffuse thickening of the frontal and parietal bones and markedly increased bone opacity (Figure 1b). Magnetic resonance imaging scans revealed increased diploe thickness in all sequences. No pressure related distortions were observed on the brain parenchyma (Figure 1c).

No abnormalities were observed on routine biochemical screening tests or in the hemogram and the dog tested negative for canine distemper virus, parvovirus and coronavirus using immuno-chromatographic assay. In addition, a biopsy sample was taken from the bone tissue for histopathological evaluation.

The patient was monitored until one year of age and the swelling in the lesioned area was observed to have enlarged and expanded. Symptomatic treatment was prescribed including steroids and nonsteroidal anti-inflammatory drugs to relieve pain. She was reported to have died at the age of 14 months due to poor care.

Bone biopsy samples harvested from the lesioned area were initially fixed in 10% formalin solution for 36 hours and then kept in a 5% nitric acid solution for 48 hours for decalcification. After routine tissue processing protocols, the specimens were embedded in paraffin, cut to a thickness of 4-5 µm and stained with Hematoxylin and Eosin. Histopathologically, compact bone tissue composed of thickened trabeculae was observed in the sections. The bone trabeculae consisted of two structures: immature woven bone and mature trabeculae (Figure 2a). The trabeculae appeared thickened with narrowed medullary spaces which were replaced by highly vascular intermediate fibrosis and a few osteoblastic and osteoclastic cells were also seen (Figure 2b). Prominent basophilic cement lines were noted between these two structures (Figure 3a, b).

Discussion

Calvarial Hyperostosis Syndrome, which has recently been defined in juvenile dogs, is a non-neoplastic bone disease characterized by the swelling of the skull (Pastor et al., 2000; McConnell et al., 2006; Mathes et al., 2012). This syndrome has been most commonly reported in Bullmastiffs (Pastor et al., 2000; McConnell et al., 2006), and occasionally, in other breeds (Thompson et al., 2011; Mathes et al., 2012). This is the first reported case of canine CHS in a Pit Bull Terrier with its clinical, radiological and histopathological aspects in Turkey.

This condition was reported only in juvenile dogs and whether or not gender affects susceptibility to the disease is still a matter of debate (Pastor et al., 2000; McConnell et al., 2006; Mathes et al., 2012). In the presented case, the disease was encountered in a 4-month-old female Pit Bull. Clinical signs of the disease
subperiosteal inflammation in the bone tissue in the cases of
It has been reported that there was prominent periosteal and
involvement on the basis of clinical and radiographic findings.
regions of the skull and there was no evidence of mandibular
since the lesion developed bilaterally in the parietal and frontal
sented case, the lesion was diagnosed as calvarial hyperostosis
diagnosis (McConnell et al., 2006; Mathes et al., 2012). In the pre
location of the lesion is of great importance in the differential
ostosis (Kamoun-Goldrat and Le Merrer, 2008). The anatomic
topathological traits of the syndrome resemble those of canine
(Parrot et al., 2000; McConnell et al., 2006). The clinical and his-
tological aspects. It was reported in the same studies that
hyperostosis may occasionally be confused with osteoma since
is a similar disease to that found in humans in terms of clinical and
thrombolytic agents such as dehydrated extract of snake venom
(such as Deer Venom, Zoetis) twice a day for 5 days was used to
The etiology of calvarial hyperostosis is still unknown. Possible
roles of prostaglandin E1 and E2 have been suggested in some
studies, in which elevated levels of serum prostaglandin E was de-
going nature. Once the bone tissue reaches maturity, the lesions
may regress. Therefore, no specific treatment has been indicated.
including painful swelling of the skull bones, lymphadenopa-
thy, eosinophilia and fever (Muir et al., 1996; Pastor et al., 2000;
Thompson et al., 2011). Hydrocephalus, lameness and purulent
osteomyelitis were also reported (Pastor et al., 2000; Thompson
et al., 2011; Mathes et al., 2012). No other symptoms except for
bilateral swelling of the parietal and frontal bones of the skull
and fever were detected in the presented case.
Calvarial Hyperostosis Syndrome is a rare condition in dogs and
it has been most commonly reported in young Bullmastiff dogs
(Pastor et al., 2000; McConnell et al., 2006). The clinical and his-
topathological traits of the syndrome resemble those of canine
craniofacial osteopathy (Alexander, 1983; Gülanber et al.,
2002; Huchkowsky, 2002) and human infantile cortical hyper-
ostosis (Kamoun-Goldrat and Le Merrer, 2008). The anatomic
location of the lesion is of great importance in the differential
diagnosis (McConnell et al., 2006; Mathes et al., 2012). In the pre-
sented case, the lesion was diagnosed as calvarial hyperostosis
since the lesion developed bilaterally in the parietal and frontal
regions of the skull and there was no evidence of mandibular
involvement on the basis of clinical and radiographic findings.
It has been reported that there was prominent periodontal and
subperiosteal inflammation in the bone tissue in the cases of
calvarial hyperostosis (Pastor et al., 2000; Thompson et al., 2011;
Mathes et al., 2012). No signs of inflammation were detected in
the presented case. After the initial referral to the clinic, the
patient was administered 2 mg/kg methylprednisolone sodium
succinate (Prednol, Mustafa Nevzat Drug Industry, Turkey) and
2 mg/kg carprofen (Rimadyl, Zoetis) twice a day in view of the
fact that the painful swelling on the head might have resulted
from the inflammatory response in the soft tissues and tempo-
rary pain relief was achieved with this treatment. However, ra-
diography and a bone tissue biopsy confirmed that the condi-
tion was hyperostosis. The lack of inflammatory reaction in the
biopsy sample was associated with the long-term use of steroid
reported that inflammatory changes correlated with the phase
of the disease at the time of the biopsy. Histopathologically, cal-
varial hyperostosis is characterized by periosteal proliferation
of the parietal and frontal bones and correspondingly thickening
of these bones. (Pastor et al., 2000; McConnell et al., 2006;
Thompson et al., 2011; Mathes et al., 2012). In the presented
case, radiography and magnetic resonance imaging revealed
asymmetrical calvarial thickening. Characteristic microscopic
findings in hyperostosis included the development of new bone
tissue, which appeared as marked thickening of the trabecular
structures in the zone, and correspondingly, the narrowing of
centrally located bone marrow spaces replaced by a highly vas-
cular fibrous tissue and the presence of prominent basophilic
cement lines between these thick, newly formed trabeculae and
the mature bone tissue (McConnell et al., 2006; Thompson et al.,
2011). Our findings were compatible with those of the above-
mencnted reports. Clinically and histopathologically, calvarial
hyperostosis may occasionally be confused with osteoma since
it is a localized bone growth. It is usually easy to differentiate the
entity by careful microscopic evaluation. In osteomas, the spaces
between the trabeculae are larger with the occasional presence
of bone marrow elements and there is very scanty fibrous tissue
(Milli and Hazıroğlu, 1997). In contrast, in hyperostosis, these
spaces are narrow and contain large amounts of highly vascular
fibrous tissue. Newly formed trabeculae appear thickened and
basophilic cement lines are prominent (McConnell et al., 2006;
Thompson et al., 2011). However, in osteomas, newly formed
bone trabeculae are thin and cementing lines are not visible.

The etiology of calvarial hyperostosis is still unknown. Possible
roles of prostaglandin E1 and E2 have been suggested in some
studies, in which elevated levels of serum prostaglandin E was de-
tected in some children with infantile cortical hyperostosis, which
is a similar disease to that found in humans in terms of clinical and
histopathological aspects. It was reported in the same studies that
collagen disorders might also have played a role in the onset of the
disease (Gens sure et al., 2005; Glorieux, 2005). Therefore, we con-
sider that further detailed studies should be carried out to elucidate
the causes in the etiology of canine calvarial hyperostosis.

Most cases of calvarial hyperostosis appear to be of a self-limit-
ing nature. Once the bone tissue reaches maturity, the lesions
may regress. Therefore, no specific treatment has been indicated.

![Figure 2. a, b. (a) Bone tissue composed of thickened trabeculae (star). H.E. Bar=100μm. (b) Intermediate fibrosis (arrow head) within the medullary spaces and a few osteoblastic and osteoclastic cells. H.E. Bar=100μm.](image1)

![Figure 3. a, b. Prominent basophilic cementing lines (arrows) between mature and immature bone tissue. H.E. Bar=A.50 μm B.20 μm](image2)
In some incidents, the lesions were grossly and histopathologically confused with osteomyelitis and, thus, antibiotics were prescribed (Thompson et al., 2011). Nonsteroidal anti-inflammatory drugs were administered in some cases to inhibit inflammation and to relieve pain (De Heer et al., 2015). In the presented case, pain relief and resolution of edema were achieved using steroids and nonsteroidal antiinflammatory drugs. However, no regression was observed and the lesion continued to grow.

References


Thompson, D.J., Rogers, W., Owen, M.C., Thompson, K.G., 2011. Idiopathic canine juvenile cranial hyperostosis in a Pit Bull Terrier. New Zealand Veterinary Journal 59(4), 201-205. [CrossRef]