Chemical Profiling and Wetting Behaviors of Endemic *Salvia absconditiflora* Greuter & Burdet (Lamiaceae) Collected from Gypsum Areas

Aysenur Kayabas¹, Ertan Yildirim²

¹Çankırı Karatekin University, Faculty of Science, Department of Biology, Çankırı, Turkey
²Gazi University, Faculty of Science, Department of Chemistry, Ankara, Turkey

ORCID IDs of the authors: A.K. 0000-0003-3555-4399; E.Y. 0000-0002-4083-3408

ABSTRACT

Objective: *Salvia absconditiflora* Greuter & Burdet is an endemic plant and survives in nature by adapting to extreme conditions. The aims of this study are to characterize and compare the diversity in the spectral-chemical structure of *S. absconditiflora*’s plant parts using the FTIR spectroscopy technique, to determine the wettability of the adaxial and abaxial epidermal surfaces of *S. absconditiflora* leaves and to interpret whether there is a difference between the contact angle (CA) measurements at the points determined in the surface area of the leaves from the part close to the petiole to the leaf tip.

Materials and Methods: The ATR-FTIR spectra for the chemical content of *S. absconditiflora* were obtained from six different plant parts and information about their chemical compositions was obtained. CA measurements were carried out for the natural events of the leaf area, especially for the water holding capacity or hydrophilic-hydrophobic characteristics.

Results: The biochemical fingerprint of *S. absconditiflora* was determined by the analysis of chemical groups in vegetative and generative plant parts using ATR-FTIR spectroscopy. The CAs showed that the leaf had a hydrophobic character. In addition, leaf hysteresis was determined for each plant part, and it was understood that the lotus effect also appeared in *S. absconditiflora*.

Conclusion: Detailed biochemical profiling, wettability, and hysteresis reports of *S. absconditiflora* were created for the first time. With this study, important clues about the adaptation of plants to harsh conditions were obtained.

Keywords: ATR-FTIR spectroscopy, contact angle, gypsum, hysteresis, *Salvia* leaf
environmental conditions (12). The life form of S. absconditiflora, which generally spreads on rocky limestone slopes, dry steppes, fallow fields, and roadsides, is hemicryptophyte (13) and its flowering time is from May to August.

Gypsum habitats with rare, threatened, and endemic plants are one of the most illustrative examples of natural stressful environments (14). Depending on the substrate factor, gypsum plants are faced with both the physical and chemical stress of the soil and arid climatic conditions. For plants growing in gypsum soils containing CaSO$_4$·2H$_2$O, soil salinity is also a consideration (14). When plants are exposed to salinity, certain biochemical changes occur in plant tissues which maintain an osmotic balance between soil and these tissues. These changes cause the accumulation or loss of biochemicals such as carbohydrates, amines, and lipids (15). Plants develop morphological, physiological, ecophysiological, and biochemical adaptations to tolerate substrate factors such as soil salinity. Examining the properties of leaves under salt stress is an important way to study abiotic stress situations (16).

The use of infrared (IR) spectroscopy in biological samples dates to the 1950s (17). After the development of IR spectroscopy, Fourier transform infrared (FTIR) spectroscopy became a valuable instrument for distinguishing and identifying different samples (18). Attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy is also a tool with many advantages due to features such as being able to perform the analysis in a short time without the need for sample dilution and more frequent reproducibility (19). Furthermore, in ATR-FTIR spectroscopy, ATR measurement is independent of sample thickness and can be measured even when the biological sample is small (20).

The fact that FTIR spectroscopy allows the investigation of biological samples as well as gases, liquids, and solids, has made it powerful (18). FTIR provides effective data on the molecular structure and chemical composition of biological samples. These fingerprints even make it possible to trace changes in the molecular composition of human cancer diseases today (21).

In addition to its use in human health, FTIR is also used to monitor plant physiological processes such as environmental stress, leaf senescence, and aging (22). Wahab et al. reported that FTIR helped identify the use of Cactus leaves fibers in wastewater treatment for ammonium removal as a recycling strategy (23). Palacio et al. investigated the ability of gypsum plants to distinguish groups by comparing the main chemical groups in the leaves of plant groups specialized for gypsum habitats with the help of FTIR spectroscopy (24). Woutersen et al. interpreted the evolutionary history of Nitaria by determining the chemical composition of pollen walls with FTIR spectroscopy (25). To understand the osmotic balance between the roots, which are the most important organs in the connection of plants with the soil, and the soil solution, biochemicals are determined with expensive equipment such as HPLC and GS-MS (26), together with xylem sap analysis (27). However, the use of FTIR spectroscopy in stress studies is recommended more due to its advantages such as time efficiency and cheapness (15).

Wetting, which occurs because of the interaction of water with a surface, has a critical importance in plants. The water contact angle (CA) with the surface is the angle at which water, air, and solid meet, and it is also a measure that represents the probability of the surface being wetted by water (28). Leaf wetting is effective in reducing water loss from intense transpiration, thus limiting water depression by keeping the relations between the plant and water in balance (29-30). The plant surfaces exhibit hydrophobic or hydrophilic properties depending on their affinity for wetness (31). As the surface hydrophobicity increases, the contact angle hysteresis (CAH) decreases in parallel with the increase in water contact angles (CAs) (32). Super hydrophobicity is very important in wetting studies, where both the water contact angle is greater than 150° and the hysteresis is less than 10°. Super hydrophobicity is often associated with very low adhesive surfaces. The best example of a low stickiness surface and super hydrophobicity is the lotus effect, which comes from the waterproofing of the lotus leaf. The lotus effect was first described by Neinhuis and Barthlott (33), and it was reported that the water-repellent effect of the lotus leaf resulted from its complex morphology. Studies on hydrophobic natural surfaces were generally inspired by the lotus leaf (34) and Salvia was interpreted for the first time.

In this study, endemic S. absconditiflora Greuter & Burdet growing in gypsum habitats was examined. To the best of our knowledge, there are no literature reports regarding the FTIR spectroscopy analysis and CA measurements of S. absconditiflora. Two main objectives of this study were: (i) to characterize and compare the diversity in the spectral-chemical structure of vegetative and generative organs of S. absconditiflora using the FTIR spectroscopy technique; and (ii) to determine the wettability of the adaxial and abaxial epidermal surfaces of S. absconditiflora leaves and to interpret whether there is a difference between the CAs at the points determined in the surface area of the leaves.

MATERIALS AND METHODS

Species Selection and Study Area

The endemic *Salvia absconditiflora* samples were collected from around the Aşağıpelitözü village (950-1000 m a.s.l., 40°29' N, 33°41' E) in the Çankırı province in the northern part of Central Anatolia from May to June 2021 (Figure 1). In this study, *S. absconditiflora* was taken from gypsum areas (Figure 1d). After it was brought to the laboratory, it was freed from residues. Damaged plant parts were not included in the analysis. The plant was identified taxonomically according to Davis et al. (35). The plant material identification was determined by the author (A. Kayabaş). After plant identification, the vegetative and generative parts were dried in a shady and ventilated room. The plant samples were stored in Çankırı Karatekin University as part of a personal collection. When evaluated climatically, the climate in Çankırı, which is approximately 250 km away from the sea, is continental and a semi-arid climate prevails (36). When examined geologically, gypsum formations are common in the Çankırı province and its surroundings (36).
ATR-FTIR Spectroscopic Analysis
The infrared spectra of the dried root, stem, leaf, petiole, and flower were obtained using ATR-FTIR spectroscopy, model Thermo Nicolet 6700, supplied by OMNIC software and recorded at room temperature in the wavenumber range from 400 to 4000 cm\(^{-1}\) at a resolution of 4 cm\(^{-1}\), accumulating 32 scans per spectrum.

Leaf CAs Measurement
The CA measurements of the \textit{S. absconditiflora} leaves were carried out at room temperature using a Krüss DSA 100 goniometer. A drop of deionized water (4 \(\mu\)L, 18 MΩ cm resistivity) was used as the wetting liquid. Three contact angle values were obtained from three different parts between the petiole and the leaf tip and then averaged. The leaf veins were avoided in the measurements.

RESULTS
ATR-FTIR spectroscopy gave detailed results for the analysis of organic matter chemical groups in the vegetative and generative plant parts of \textit{S. absconditiflora}. The results contributed to the determination of the biochemical fingerprint of \textit{S. absconditiflora}. Starting from the root of \textit{S. absconditiflora}, the ATR-FTIR spectra of each plant part were taken. The ATR-FTIR spectra of the root, stem, petiole, leaf, sepal, and petal are shown in Figure 2. Although there were partial shifts in the band regions seen in the ATR-FTIR spectra, it was determined that there was not much change. It was found that the chemical groups of the ATR-FTIR spectra for each segment were similar and the band regions were close (Table 1). It was determined that there were changes in the intensities of only some chemical groups ranging from the root to the petal.

It was determined that the S-O bending bands in the ATR-FTIR spectrum were caused by gypsum and sulphate, and the range of these bands was between 602-595, 680-675, and 690-630 cm\(^{-1}\) respectively. The bands of calcium carbonate and alkane groups were found in the range of 730-710 cm\(^{-1}\). Calcium oxalate, lignin, and calcium carbonate sourced bands were seen in 780-775 (COO\(^{-}\) bending), 832-825 (aromatic CH out of plane) and 879-872 cm\(^{-1}\) (C-O plane banding) bands, respectively. The band C-O stretching, and O-H deformation band of polysaccharides were detected at 1015-1005 cm\(^{-1}\). Stretching bands in silicates, phosphates and sulphates were seen significantly at 1150-950 cm\(^{-1}\).
Table 1. Characteristic bands of ATR-FTIR spectra at *Salvia absconditiflora*.

<table>
<thead>
<tr>
<th>Chemical Group/Compound type</th>
<th>Wavenumbers (cm⁻¹)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>S-O bending, Gypsum</td>
<td>(669, 600)</td>
<td>(38)</td>
</tr>
<tr>
<td>S-O bending, Sulphates</td>
<td>(680-610)</td>
<td>(37)</td>
</tr>
<tr>
<td>C-O in-plane bending, Calcium carbonate</td>
<td>(715)</td>
<td>(39)</td>
</tr>
<tr>
<td>CH₂ wag, Long chain (> C4) alkanes</td>
<td>(720)</td>
<td>(24)</td>
</tr>
<tr>
<td>COO⁻ bending, Calcium oxalate</td>
<td>(780)</td>
<td>(42)</td>
</tr>
<tr>
<td>Aromatic CH out of plane, Lignin</td>
<td>(835)</td>
<td>(40)</td>
</tr>
<tr>
<td>C-O plane bending, Calcium carbonate</td>
<td>(874)</td>
<td>(41)</td>
</tr>
<tr>
<td>Combination of C-O stretching and O-H deformation, Polysaccharides</td>
<td>(1050)</td>
<td>(43)</td>
</tr>
<tr>
<td>Si-O stretching, Silicates</td>
<td>(1100-950)</td>
<td>(44)</td>
</tr>
<tr>
<td>P-O stretching, Phosphates</td>
<td>(1100-1000)</td>
<td>(44)</td>
</tr>
<tr>
<td>C-O-C stretching Esters</td>
<td>(1265-1240)</td>
<td>(45)</td>
</tr>
<tr>
<td>C-N stretching Amide III</td>
<td>(1312)</td>
<td>(47)</td>
</tr>
</tbody>
</table>

Salvia absconditiflora | Wavenumbers (cm⁻¹) | Ref. |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Root (cm⁻¹)</td>
<td>(669, 600)</td>
<td>(38)</td>
</tr>
<tr>
<td>Stem (cm⁻¹)</td>
<td>(667, 600)</td>
<td>(38)</td>
</tr>
<tr>
<td>Petiole (cm⁻¹)</td>
<td>(667, 600)</td>
<td>(38)</td>
</tr>
<tr>
<td>Leaf (cm⁻¹)</td>
<td>(668, 598)</td>
<td>(38)</td>
</tr>
<tr>
<td>Sepal (cm⁻¹)</td>
<td>(667, 597)</td>
<td>(38)</td>
</tr>
<tr>
<td>Petal (cm⁻¹)</td>
<td>(665, 599)</td>
<td>(38)</td>
</tr>
</tbody>
</table>

(41) C-O stretching of phenolic and/or arylmethyl ethers, Indicative of lignin backbone

(46) C-N stretching Amide III
Table 1. Characteristic bands of ATR-FTIR spectra at *Salvia absconditiflora*. (continued)

<table>
<thead>
<tr>
<th>Salvia absconditiflora</th>
<th>Wavenumbers (cm⁻¹)</th>
<th>Chemical Group/Compound type</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Root (cm⁻¹)</td>
<td>Stem (cm⁻¹)</td>
<td>Petiole (cm⁻¹)</td>
<td>Leaf (cm⁻¹)</td>
</tr>
<tr>
<td>(1450, 1370)</td>
<td>(1458, 1373)</td>
<td>(1455, 1374)</td>
<td>(1457, 1373)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1429)</td>
<td>(1430)</td>
<td>(1434)</td>
<td>(1434)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1440-1410)</td>
<td>(1450-1425)</td>
<td>(1445-1425)</td>
<td>(1470-1435)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1510-1505)</td>
<td>(1510-1500)</td>
<td>(1511-1502)</td>
<td>(1510-1504)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1555)</td>
<td>(1550)</td>
<td>(1555)</td>
<td>(1558)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1600-1650)</td>
<td>(1630-1580)</td>
<td>(1630-1580)</td>
<td>(1630-1585)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1617)</td>
<td>(1617 cm⁻¹)</td>
<td>(1617 cm⁻¹)</td>
<td>(1614 cm⁻¹)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1653)</td>
<td>(1655)</td>
<td>(1651)</td>
<td>(1655)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1735-1730)</td>
<td>(1740-1720)</td>
<td>(1740-1720)</td>
<td>(1740-1720)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2850)</td>
<td>(2850)</td>
<td>(2850)</td>
<td>(2850)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2920)</td>
<td>(2920)</td>
<td>(2920)</td>
<td>(2920)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3500-3000)</td>
<td>(3500-3000)</td>
<td>(3500-3000)</td>
<td>(3500-3000)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ref.: (24) C-H deformations, Phenolic (lignin) and aliphatic structures
(24) Symmetric C-O stretch from COO⁻ or stretch and OH deformation, Carboxylate/Carboxylic structures (humic acids)
(51) C-O stretching, Calcium carbonate
(24) Aromatic C = C stretching, Lignin/Phenolic backbone
(50) N-H in plane (amide-II), Proteinaceous origin
(61) Aromatic C = C stretching and/or asymmetric C-O stretch in COO⁻, Lignin and other aromatics, or aromatic or aliphatic carboxylates
(52) C = O stretching, Calcium oxalate
(53) C = O of amide I, Proteinaceous origin
(61) C = O stretch of COOH, Carboxylic acids
(45) C = O stretch of COOR, Esters
(56) Symmetric CH₂ stretching Fats, waxes, lipids
(57) Asymmetric CH₂ stretching Fats, waxes, lipids
(55) O-H stretching, Cellulose
(54) O-H stretching, Gypsum
cm\(^{-1}\). It is thought that these bands overlap each other since these bands are seen distinctly and are also in the fingerprint region. C-O-C and C-N stretch bands in lignin and amide-III structures were detected at 1280-1200 cm\(^{-1}\). Lignin, calcium oxalate, phenolic and aliphatic structures, carboxylate structures were referred to C-O stretch (1275-1265 cm\(^{-1}\)), C-H deformation (1450-1371 cm\(^{-1}\)), symmetrical C-O, COO\(^{-}\) and OH deformation bands (1434-1426 cm\(^{-1}\)). C-O stretching, aromatic C=C stretching, and N-H bands, which belong to calcium carbonate, lignin/phenolic, and proteinaceous origin, were determined at 1450-1410, 1505-1502, and 1560-1550 cm\(^{-1}\), respectively. The aromatic C=C band containing lignin and other aromatic structures, carbonyl band originating from calcium oxalate, and protein bands known as carbonyl amides were detected at 1640-1580, 1620-1615, and 1655-1650 cm\(^{-1}\). The carboxylic acid carbonyl stretch band and carbonyl band of esters were also determined at 1710-1700 and 1750-1715 cm\(^{-1}\).

Bands of hydroxyl chemical groups originating from gypsum and cellulose were seen in plant parts from root to flower. The intensity change graph of the hydroxyl bands is shown in Figure 3a. Accordingly, the hydroxyl band intensity from root to petal was calculated as 3240, 3170, 2570, 1410, 5040, and 8560 a.u. (arbitrary units), respectively. Band intensities were determined to be different for each region. The bands belonging to symmetric and antisymmetric aliphatic carbon groups, which are considered as the main source of oils, waxes, and lipids were also observed at 2920 and 2850 cm\(^{-1}\) (Figure 3b). The intensity of these bands also differed according to the regions of the plant. Band intensities were measured as 1520, 660, 1400, 2160, 1260, and 750 a.u. from root to petal. These results show that the band intensity changes for each part, which is valid for the hydroxyl band.

CA measurements were taken to understand the chemical composition of the leaf surfaces and their hydrophobic-hydrophilic interactions. The leaves were measured at regular intervals for CA measurements. The CA of the leaves divided into three regions from the petiole to the tip of the leaf was measured. According to these measurements, the CA measurements of the abaxial surface of the leaf from the petiole to the leaf tip were found to be 99.14±3.05°, 98.42±4.41° and 97.78±2.18°, respectively (Figure 4).

Three regions were selected for the adaxial surface of the leaf, and CA measurements were made for these regions. In this context, the CA measurement results were measured as 98.02±4.42°, 95.09±4.17° and 89.98±4.04° in the regions determined from the petiole to the leaf tip (Figure 5). The CA measurement values on the adaxial surface differed more than the abaxial surface.
Contact angle hysteresis (CAH) values, a measure of surface roughness that can be determined by CA measurements, were also calculated. Leaf surfaces were considered for hysteresis values. For the CAH of the abaxial and adaxial surfaces, the differences between the values of the advancing and receding CAs taken from three different regions of each surface were taken. The CAH values of the adaxial and abaxial surfaces of the leaf were different (Table 2).

This study aims to investigate the chemical profile and wettability of *S. absconditiflora*. In this context, a series of results based on ATR-FTIR spectroscopy and CA measurements were obtained. With the help of ATR-FTIR, the chemical profile of the *S. absconditiflora* was obtained and the types of possible chemical structures in this plant were determined. In particular, the ATR-FTIR spectra taken from the root, stem, petiole, leaf, sepal, and petal of the *S. absconditiflora* were compared, and which chemical components were more abundant was determined by the change of band intensities.

In the ATR-FTIR spectra from the plant parts of *S. absconditiflora*, the bands were similar, but there were variations in the intensities and wavenumbers of some bands. The values of the shifts in the bands are given in Table 1. It is thought that the shifts in the number of waves seen in the bands detected in the ATR-FTIR spectra do not change much chemically, but the change in band values may be because of the extreme habitat in which this plant species lives.

The changes in band intensities show that *S. absconditiflora* contains different amounts of chemicals in each plant part. The intensities of the bands belonging to the hydroxyl and aliphatic groups, in which the band area can be easily detected, were compared among the spectra. It was calculated that the hydroxyl band had different areas ranging from the root to the petal. This proves that the amount of gypsum or cellulose in the plant varies according to the plant parts (Table 1, Figure 3a). Band intensities for the relative amounts of oils, lipids and waxes compounds were calculated from the ATR-FTIR spectra. It was determined that the band intensities changed according to the chemical amounts in each plant part (Table 1, Figure 3b).

As a result of the CA measurements taken from different parts of the *S. absconditiflora* leaf, it was observed that there were more changes, especially on the adaxial surface compared to the abaxial surface. The difference between the CAs changed more from region to region on the adaxial surface. The CA on the abaxial surface showed a change of about 10° from petiole to leaf tip. Contrary to this situation, on the adaxial surface, a 2° change was observed in the CAs. It can be said that the stability of the CA in the abaxial part of the leaf is due to less contact with environmental conditions than the adaxial surface. The source of the changes in the CA on the adaxial surface may be because the sun's rays do not touch the leaf surface at the same angle. It is thought that the sun's rays remove the water on the leaf, making it more hydrophobic than the abaxial surface.

When the hydrophobicity of the *S. absconditiflora* leaf is examined in detail, CAs on the adaxial surface of the leaf is average ~94°, while it is average ~98° on the abaxial surface (Adaxial < Abaxial hydrofobicity). It can be said that the adaxial and abaxial surfaces of the *S. absconditiflora* leaf are hydrophobic according to the results of the CAs (Adaxial < Abaxial hydrofobicity). However, while the CA was higher on the adaxial surface of the leaf, the hysterization of the abaxial surface of the leaf was higher (Adaxial > Abaxial). The hysterization of the adaxial surface of the leaf averages ~4.6°, while the abaxial surface averages ~3.2°.

Table 2. Hysteresis values.

<table>
<thead>
<tr>
<th>Regions</th>
<th>Hysteresis values</th>
<th>Regions</th>
<th>Hysteresis values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leaf tip</td>
<td>6.25</td>
<td>Leaf tip</td>
<td>8.20</td>
</tr>
<tr>
<td>Middle region of the leaf</td>
<td>1.05</td>
<td>Middle region of the leaf</td>
<td>1.67</td>
</tr>
<tr>
<td>Petiole</td>
<td>2.17</td>
<td>Petiole</td>
<td>4.06</td>
</tr>
</tbody>
</table>

DISCUSSION

The chemical groups and band intensities of the root, stem, leaf, petiole, sepal, and petal of *S. absconditiflora* were measured by using ATR-FTIR. In the literature, bands have been reported for calcium, sulphate, silicate, phosphate, polysaccharide, lipid, aromatic compounds, phenolic compounds, and protein-based structures in the ATR-FTIR spectra taken especially for gypsum plants (24,37-53). Band intensities varied between plant parts from root to flower. Palacio et al. reported that band densities of wide and narrow gypsum plants varied between ecological plant groups (24). In this study, it was understood that the band types did not change much in the ATR-FTIR spectra taken for the vegetative and generative plant parts of the *S. absconditiflora*, but the band intensities differed. In this case, where the hydroxyl band of gypsum (54,55), whose intensity can be measured, differs for each plant part, it was shown that the amount of gypsum varied in the root, stem, leaf, petiole, and flower. Likewise, the observation of differences in the band intensities of symmetric and asymmetrical aliphatic carbons, which are the basis of oils, waxes, and lipids, showed that the plant parts have different chemical contents (56,57). In general, the presence of each specific band was detected in the ATR-FTIR spectra taken.
but it was understood that the same trend was observed for all plant parts where the band intensities were different.

Since gypsum plants grow in gypsum soils, they have the potential to be an accumulator of calcium and sulfur (58). Ozdemir et al. reported the presence of the calcium mineral in Gypsophila taxa and that it can be used as an accumulator (59). The presence of chemical bands in calcium carbonate and calcium oxide compounds, which are thought to be calcium sources for each plant part in the ATR-FTIR spectra, indicates that *S. absconditiflora* may be an accumulator in terms of calcium content. Another mineral frequently seen in gypsum plants is sulfur and it has been reported that it can act as an accumulator (58). Sulfur-derived bands, especially in the structure of sulphates, were detected in each of the plant parts and it was understood from the band intensities that this plant species is rich in terms of the sulfur mineral. In addition to these two minerals, the presence of organic compounds (aromatic, phenolic, etc.) and protein-based structures revealed that the plant species is also rich in organic compounds (24). The high intensities of the hydroxyl bands originating from gypsum indicate that the water content and gypsum content of *S. absconditiflora* are high. In terms of adaptation to harsh conditions, the presence of important minerals in *S. absconditiflora*, as well as the presence of organic compounds, will help in the process of understanding adaptation.

Wang et al. observed that the CAs and hysteresis of the adaxial and abaxial surfaces on the lotus leaf were also different and mentioned two types of surface descriptions of plants with hydrophobic properties and stated that leaves such as lotus exhibited a typical feature in investigating the hydrophobicity of various plant leaves (32). The hydrophobicity and hysteresis of the *S. absconditiflora* leaf support the results in the lotus leaf. Legrand et al. also recorded the hydrophobicity and hysteresis of three natural leaves, describing their wetting behavior, and modeled the relationship between surface roughness, wettability, and leaf behavior (34). Hysteresis values also help to prove the existence of inorganic compounds in the plant. Katata and Held tested the presence of inorganic compounds in a spruce forest with the hysteresis effect (60). The structure of superhydrophobic surfaces such as lotus leaves and rose petals is due to the fine architectural features created by nature, and the superhydrophobic behavior of these organic surfaces in fields such as chemistry has also inspired the creation of surfaces with synthetic molecules (62). This study, inspired by the lotus effect of the *S. absconditiflora* plant, which has a surface feature like a lotus leaf, can contribute to the formation of synthetic surfaces in other fields of science. As well as contributing to the formation of synthetic molecules, knowing the morphology and wettability of the leaf also guides the retention of pesticides used in sustainable agriculture on the leaf (63). Similar studies are also important in agriculture as well as plant ecology.

CONCLUSION

In summary, in the first step of this study, the chemical profile of the root, stem, petiole, leaf, sepal, and petal of *S. absconditiflora* was extracted using the ATR-FTIR technique. Using this technique, possible compounds that might be found in the structure of the plant were determined. Due to the different band intensities of each plant part in terms of compound content, it was understood that the compound amounts of each structure were different from region to region. In the second stage, detailed wettability, and hysteresis results of the abaxial and adaxial surfaces of the leaves were evaluated. The leaves were divided into three different regions on the petiole up to the tip, and CA measurements were made for both sides (adaxial and abaxial). It was determined that the adaxial surface was more hydrophobic than the abaxial surface, and the CAs were less stable. It was discussed that this situation will play a key role in understanding the adaptation of the *S. absconditiflora* plant to extreme conditions. At the same time, by calculating the hysteresis results of the surfaces, it was announced that this plant species has similar characteristics as the lotus plant. As a result, detailed wettability, and hysteresis profiles of both chemical and leaves of the *S. absconditiflora* plant were created for the first time in the literature. With this study, important clues about the adaptation of plants to harsh conditions were obtained. Thus, this study paves the way for many future studies to determine what kinds of chemical structures and wettability parameters are required to prevent the future extinction of plant species that cannot keep up with extinction or difficult conditions in the world.

Acknowledgements: The authors would like to thank the Gazi University Academic Writing and Research Center for their help and valuable support in the proofreading of this study.

Informed Consent: Written consent was obtained from the participants.

Peer Review: Externally peer-reviewed.

Conflict of Interest: Authors declared no conflict of interest.

Financial Disclosure: Authors declared no financial support.

REFERENCES

1. Frat M. *Stachys semsurensis* (Lamiaceae), a new species from Adiyaman province (Turkey) belonging to section. Infrarosularis. Phyto-taxa 2021; 511: 275-82.

Kayabas and Yildirim. Biochemical and wettability analyses of Salvia adapted to gypsum soils

54. Mandal PK, Mandal TK. Anion water in gypsum (CaSO₄·2H₂O) and hemihydrate (CaSO₄·1/2H₂O). Cem Concr Res 2002; 32: 313-16.

